引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 247次   下载 5 本文二维码信息
码上扫一扫!
分享到: 微信 更多
电子回旋共振等离子体推力器放电机理数值模拟研究
陈留伟,夏广庆,周念东,吴秋云,邹存祚
(大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024)
摘要:
电子回旋共振等离子体推力器(ECRPT)是一种高比冲、高效率且结构简单的新型电磁式推力器。为了研究推力器的放电原理和工作机制,采用漂移-扩散流体模拟方法,仿真模拟了微波等离子体放电过程。仿真结果表明,电子数密度达到1016~1017m-3数量级,氙气的电子数密度比氩气高50%;电子数密度、碰撞功率损耗均随着计算域内压强的增大而增大,电子温度随压强的增大而减小;电子数密度、碰撞功率损耗随着入射微波功率的增大而增大。在未来ECRPT的实际应用中,可以通过使用氙气,适当增大推力器腔内压强以及入射微波功率,使其具有最佳的推力、比冲和工作效率。
关键词:  电推进  电子回旋共振(ECR)  微波放电  漂移-扩散  仿真模拟
DOI:
分类号:
基金项目:国家自然科学基金(11675040;11575003);辽宁省自然科学基金(201602175)。
Numerical Simulation of Discharge Mechanism of Electron Cyclotron Resonance Plasma Thruster
CHEN Liu-wei,XIA Guang-qing,ZHOU Nian-dong,WU Qiu-yun,ZOU Cun-zuo
(State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology, Dalian 116024,China)
Abstract:
Electron Cyclotron Resonance Plasma Thruster (ECRPT) is a new type of electromagnetic thruster with high specific impulse, high efficiency and simple structure. In order to study the discharge principle and working mechanism of the thruster, the microwave plasma discharge process is simulated by the drift-diffusion fluid simulation method. The simulation results show that the number of electrons reaches the order of 1016~1017m-3. They also show the electron density of xenon is 50% higher than that of argon. The electron density and the collision power loss increase with the increase of the pressure in the calculation domain. And the electron temperature decreases with the increase of the pressure. The electron number density and the collision power loss increase with the increase of the incident microwave power. In the future application of ECRPT, by using xenon, the appropriate increase in the thrust chamber cavity pressure and incident microwave power is advised, so that it has the best propulsion, specific impulse and work efficiency.
Key words:  Electric propulsion  Electron cyclotron resonance (ECR)  Microwave discharge  Drift-diffusion  Simulation